Chapter 12 Probability

- **12.1 Sample Spaces and Probability**
- 12.2 Independent and Dependent Events
- 12.3 Two-Way Tables and Probability
- 12.4 Probability of Disjoint and Overlapping Events
- 12.5 Permutations and Combinations
- 12.6 Binomial Distributions

12.1 Sample Spaces and Probability Probability Experiment

• A probability experiment is an action, or trial, that has varying results.

12.1 Sample Spaces and Probability Vocabulary

- **Outcome** The possible results of a probability experiment.
- Event A collection of one or many outcomes.
- Sample Space The set of all possible outcomes.

Experiment: Roll two 6-sided dice

- Sample Space The set of all possible outcomes: roll 1/1, or 1/2, or 1/3, ..., or 6/4, or 6/5, or 6/6
- Event A set of outcomes, usually expressed as a capital letter (e.g. A = "sum of dice = 7")
- **Probability of an Event** -The chance that an event "A" will happen or P(A).

	Possible Sums		First Die					
			•	•	•••	• • • •	•••	•••
		•	2	3	4	5	6	7
		•	3	4	5	6	7	8
	d Die	•••	4	5	6	7	8	9
	Secon	••	5	6	7	8	9	10
			6	7	8	9	10	11
		••• •••	7	8	9	10	11	12

Probability of an Event

- A measure of the likelihood, or chance, that the event will occur.
- Probability is a number from 0 to 1, including 0 and 1, and can be expressed as a decimal, fraction, or percent.

Impossible	hap	Equally likely to pen or not happ	ben	Certain
	Unlikely		Likely	
0	<u>1</u>	<u>1</u>	3	1
	4	2	4	
0	0.25	0.5	0.75	1
0%	25%	50%	75%	100%

12.1 Sample Spaces and Probability Calculating Probability

Theoretical Probability = Number of Favorable Outcomes Total Number of Outcomes

Experiment: A student guesses on four true/false questions. What is the probability the student will make exactly two correct guesses?

• Build a Model - The table below represents incorrect (I) and correct (C) answers.

	Number correct	Outcome			
	0	IIII			
	1	CIII ICII IICI IIIC			
exactly t	$\rightarrow 2$	IICC ICIC ICCI CIIC CICI CCII			
	3	ICCC CICC CCIC CCCI			
	4	CCCC			

Number of Favorable Outcomes= $\frac{6}{16}$ = $\frac{3}{8}$ =37.5%Total Number of Outcomes168=37.5%

12.1 Sample Spaces and Probability The Complement of an Event

• The probability of not event A, or $P(\overline{A})$, is computed by

P(A) = 1 - P(A)

- For example, we found the probability of getting exactly two correct answers was 3/8 or 37.5%.
- The probability of getting exactly zero, one, three, or four correct (not exactly two) is

P(A) = 1 - 0.375	Number correct	Outcome
= 0.625 = 62.5%	0	IIII
0.020 021070	1	CIII ICII IICI IIIC
exactly t	$\rightarrow 2$	IICC ICIC ICCI CIIC CICI CCII
	3	ICCC CICC CCIC CCCI
	4	CCCC

Example: Roll two 6-sided dice

Solve for the following probabilities.

- a) The sum is not 6.
- b) The sum is less than or equal to 9.

Possible Sums		First Die					
		•	•	•••	•• ••		••• •••
	•	2	3	4	5	6	7
	•	3	4	5	6	7	8
d Die	•••	4	5	6	7	8	9
Secon	••	5	6	7	8	9	10
	•••	6	7	8	9	10	11
	•••	7	8	9	10	11	12

P(A) = 1 - P(A)

Geometric Probability

• The ratio of two lengths, areas, or volumes.

Example

- event A = hit the inside red bull's eye
- Calculate P(A)

12.1 Sample Spaces and Probability Experimental Probability

- The results of repeated *trials* of a probability experiment.
- Success A favorable outcome.

Experimental Probability =

Number of Successes

Number of Trials

Example

• Repeated spins of the color spinner produced the following results.

Spinner Results						
red green		blue	yellow			
5	9	3	3			

• Find experimental probabilities of the colors. e.g. P(red), etc.

Color Spinner

